Data Sheet 3.64/4

Connection Point for Impulse Test System, Type CP

Application

The Connection Point is beside the generator the main component of a complete impulse test system which fulfills the following functions:

- Measuring of all relevant testing wave shapes:
 - lightning impulses (LI) 1.2/50 μs,
 - chopped lightning impulses (LIC),
 - switching impulses (SI) 250/2500 μs and
 - alternating voltages (AC).
- Chopping of lightning impulses and
- Compensation of overshoots

According to the listed functions, the Connection Point integrates the components of measurement divider, chopping gap and overshoot compensation in one single base frame. If one component is not required, the Connection Point can be realized also in a reduced configuration. The main advantage in relation to a traditional test system arrangement is based on omitted copper connections between the mentioned components. Therefore, the Connection Point is recommended for saving ground space in testing halls and for easier handling during test procedures. The Connection Point can be installed in series with the generator and the test object or in parallel to the test object as shown in figure 1 and 2.

![Figure 1: Configuration of an impulse test system with Connection Point connected in parallel](image1)

![Figure 2: Configuration of an impulse test system with Connection Point connected in series](image2)
Components of the Connection Point

Voltage divider

The low-damped capacitive voltage divider converts the high voltage (up to 3600 kV) into a measurable and for a transient recorder or peak voltmeter processable voltage signal of 1000 V. In special applications, the maximum output voltage can be adapted to other voltages as an option. The mentioned test voltages of full LI, LIC, SI and AC voltage can be measured. All requirements of the standards IEC 60060-1 and -2 are fulfilled, in particular those which are related to measuring accuracy and step response. The high-voltage capacitor is made of single units of oil impregnated capacitors. Single capacitor packages are connected in series with the inserted damping resistors. The mentioned components are housed in glass-fiber-reinforced plastic (GRP) cylinders with metal flanges. For higher voltages several high-voltage capacitors are connected in series.

The low voltage capacitor is located at the lower end of the capacitor column. Its compact design with the parallel configuration of low-voltage capacitors provides the necessary low inductance value. The terminating resistor for the connection of a 50 Ω measuring cable is included. The divider has to be connected to a high-impedance measuring unit (transient recorder or peak voltmeter ≥ 1 MΩ, ≤ 100 pF). The capacitor column is mechanically stabilized with fiber-reinforced plastic (FRP) struts. A copper foil high-voltage connection can be mounted on the connection terminal at the top electrode. A spring-tensioned metal rope realizes the grounding. The divider can be equipped with additional taps for partial operation. This item allows the optimum adaptation to the relevant test voltage level.

Chopping multiple spark gaps

The chopping gap consists of a capacitor, a separate GRP column and an isolating ladder with the mounted spark gaps. The adjustment of the space between the gaps is effected by motor drive and can be controlled via the operator device. The trigger signal from the control is transmitted to the ignition generator of the spark gap by a fiber-optic link. A specific chopping time can be realized (T_C = 0.5 – 6 μs) depending on the particular test object.

Overshoot compensation

HIGHVOLT impulse generators have a low inductive design. Impulse tests with higher peak voltages than U_P = 2000 kV require longer dielectric distances between the components of the test circuit. Assuming that the connections between the test circuit components have a specific inductivity of L = 1 μH/m, the effective parasite inductance of the entire test circuit cannot be neglected. Depending on the load of the test object an overshoot with a value of more than β = 5 % can appear. An additional overshoot compensation, integrated in the chopping gap, reduces the overshoot and allows the test of high-capacitive load by keeping the allowed overshoot and the permitted front time T_1. Due to the compact design of the Connection Point, the circuit inductance is lower in comparison with a traditional impulse test system with a separate divider and chopping gap.

The shown example explains the effectiveness of the integrated overshoot compensation. A load with C_Load = 5 nF has to be tested with a peak voltage of U_Peak = 1800 kV. The length of the example test circuit is assumed with of l = 25 m, hence the parasite inductance of the test circuit is L = 25 μH. In practice, the length depends on the detailed test bay arrangement. However, the Connection Point allows omitting of one high-voltage connection. The lightning impulse with an overshoot of β = 7.5 % and a front time of T_1 = 1.66 μs would be out of the tolerance. The overshoot compensation reduces the overshoot of < β = 5 % and allows a front time within the tolerances, see figure 3 and table 4.
Table 1: Main parameters – Types with the included components: Divider, overshoot compensation and chopping gap

<table>
<thead>
<tr>
<th>Type</th>
<th>Rated LI voltage 1.2/50</th>
<th>Rated SI voltage 250/2500</th>
<th>Rated AC voltage 50/60 Hz (RMS)</th>
<th>Series</th>
<th>Capacitance</th>
<th>Height</th>
<th>Base frame</th>
<th>Length x Width (approx.)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 1330/1200 DOC</td>
<td>1200 kV</td>
<td>950 kV</td>
<td>300 kV</td>
<td>M</td>
<td>1330 pF</td>
<td>4500 mm</td>
<td>4200 x 2000</td>
<td>1400 kg</td>
<td></td>
</tr>
<tr>
<td>CP 890/1800 DOC</td>
<td>1800 kV</td>
<td>1425 kV</td>
<td>450 kV</td>
<td>M</td>
<td>890 pF</td>
<td>6700 mm</td>
<td>5600 x 3000</td>
<td>2200 kg</td>
<td></td>
</tr>
<tr>
<td>CP 1780/1800 DOC</td>
<td>1800 kV</td>
<td>1425 kV</td>
<td>450 kV</td>
<td>G</td>
<td>1780 pF</td>
<td>9000 mm</td>
<td>6800 x 4000</td>
<td>3000 kg</td>
<td></td>
</tr>
<tr>
<td>CP 1330/2400 DOC</td>
<td>2400 kV</td>
<td>1425 kV</td>
<td>600 kV</td>
<td>G</td>
<td>1330 pF</td>
<td>1070 mm</td>
<td>8000 x 5000</td>
<td>3500 kg</td>
<td></td>
</tr>
<tr>
<td>CP 1070/3000 DOC</td>
<td>data on request</td>
<td>750 kV</td>
<td>900 kV</td>
<td>G</td>
<td>890 pF</td>
<td>1550 mm</td>
<td>9400 x 6000</td>
<td>4200 kg</td>
<td></td>
</tr>
<tr>
<td>CP 890/3600 DOC</td>
<td>data on request</td>
<td>data on request</td>
<td>data on request</td>
<td>G</td>
<td>data on request</td>
<td>1550 mm</td>
<td>9400 x 6000</td>
<td>4200 kg</td>
<td></td>
</tr>
</tbody>
</table>

1) Positive SI: The given values require a special top electrode.
2) 1h in operation
3) Depending on the rated switching impulse
4) Dimension depending on the divisibility of the base frame

Table 2: Main parameters – Types with the included components: Divider and chopping gap

<table>
<thead>
<tr>
<th>Type</th>
<th>Rated LI voltage 1.2/50</th>
<th>Rated SI voltage 250/2500</th>
<th>Rated AC voltage 50/60 Hz (RMS)</th>
<th>Series</th>
<th>Capacitance</th>
<th>Height</th>
<th>Base frame</th>
<th>Length x Width (approx.)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 1330/1200 DC</td>
<td>1200 kV</td>
<td>950 kV</td>
<td>300 kV</td>
<td>M</td>
<td>1330 pF</td>
<td>4500 mm</td>
<td>4200 x 2000</td>
<td>1400 kg</td>
<td></td>
</tr>
<tr>
<td>CP 890/1800 DC</td>
<td>1800 kV</td>
<td>1425 kV</td>
<td>450 kV</td>
<td>M</td>
<td>890 pF</td>
<td>6700 mm</td>
<td>5600 x 3000</td>
<td>2200 kg</td>
<td></td>
</tr>
<tr>
<td>CP 1780/1800 DC</td>
<td>1800 kV</td>
<td>1425 kV</td>
<td>450 kV</td>
<td>G</td>
<td>1780 pF</td>
<td>9000 mm</td>
<td>6800 x 4000</td>
<td>3000 kg</td>
<td></td>
</tr>
<tr>
<td>CP 1330/2400 DC</td>
<td>2400 kV</td>
<td>1425 kV</td>
<td>600 kV</td>
<td>G</td>
<td>1330 pF</td>
<td>1070 mm</td>
<td>8000 x 5000</td>
<td>3500 kg</td>
<td></td>
</tr>
<tr>
<td>CP 1070/3000 DC</td>
<td>data on request</td>
<td>750 kV</td>
<td>900 kV</td>
<td>G</td>
<td>890 pF</td>
<td>1550 mm</td>
<td>9400 x 6000</td>
<td>4200 kg</td>
<td></td>
</tr>
<tr>
<td>CP 890/3600 DC</td>
<td>data on request</td>
<td>data on request</td>
<td>data on request</td>
<td>G</td>
<td>data on request</td>
<td>1550 mm</td>
<td>9400 x 6000</td>
<td>4200 kg</td>
<td></td>
</tr>
</tbody>
</table>

1) Positive SI: The given values require a special top electrode.
2) 1h in operation
3) Depending on the rated switching impulse
4) Dimension depending on the divisibility of the base frame
Table 3: Overshoot compensation

<table>
<thead>
<tr>
<th>U_{peak} = 1800 kV / C_{Load} = 5 nF</th>
<th>T_1</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without compensation</td>
<td>1.66</td>
<td>7.5</td>
</tr>
<tr>
<td>With compensation</td>
<td>1.52</td>
<td>4.2</td>
</tr>
<tr>
<td>U_{peak} = 2400 kV / C_{Load} = 4 nF</td>
<td>T_1</td>
<td>β</td>
</tr>
<tr>
<td>Without compensation</td>
<td>1.74</td>
<td>8.5</td>
</tr>
<tr>
<td>With compensation</td>
<td>1.52</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Additional component features

In order to use the components separately, the Connection Point can be equipped with divisible top electrode and base frame. The Connection Point can be moved in the test hall on air cushions or rollers.

Accessories

Impulse voltage measuring / load capacitor consisting of:
- Measuring cable ($Z = 50 \, \Omega$, $l = 25 \, m$)
- Preparation for Record of Performance

Options

- Adapted LV capacitors for different output voltages
- Divisible construction of the Connection Point
- Air cushion or rollers
- Different lengths of measuring cable
- DKD calibration certificate

Type designation

CP a/b z

- a = capacitance in pF
- b = rated LI voltage in kV
- z = included components

Every letter indicates the component which is included in the Connection Point. The Connection Point can be configured according to the individual test requirements:
- D Divider
- O Overshoot compensation
- C Chopping gap

Available combinations are: CP a/b DOC, CP a/b DO and CP a/b DC